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Abstract

For the first time, a 2D electromagnetic and relativistic semi-Lagrangian Vlasov model for a multi-computer en-

vironment was developed to study the laser–plasma interaction in an open system. Numerical simulations are presented

for situations relevant to the penetration of an ultra-intense laser pulse inside a moderately overdense plasma and the

relativistic filamentation instability in the case of an underdense plasma. The Vlasov model revealed a rich variety of

phenomena associated with the fast particle dynamics induced by the laser pulse as particle trapping, particle accel-

eration and relativistic self-induced transparency in overdense plasma. Attention was focused on the efficiency and

stability properties on the numerical scheme and implementation facilities on massively parallel computers. Success of

the semi-Lagrangian Vlasov model is enhanced by the good conservation of the continuity equation and stability of

Maxwell system due to the fine description of the electron distribution function and particularly of the charge density

and current density.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical integration of the Vlasov equation is one of the key challenges of computational plasma

physics. Since the early days of this discipline, an intensive work on this subject has produced many dif-

ferent numerical schemes, which however, can be bunched together in two main groups. On the one hand,

particle-in-cell (PIC) codes have proven to be useful in studying plasma dynamics even for 2D and 3D

problems and complex geometries. However only a few particles per cell have been used particularly in 3D

PIC codes leading to a high level of numerical noise, especially in regions of phase space where the density is

low. These PIC codes, for situations relevant to laser–plasma interaction, may largely overestimate ab-
sorption of the laser light and therefore plasma heating because of intrinsic ‘‘numerical heating’’. On the
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other hand Eulerian Vlasov codes or semi-Lagrangian Vlasov codes display an extremely low level of

numerical noise and prove to be able to describe particle acceleration processes (see by instance [1,2], and

for the 2D case [3]) or saturation of the relativistic modulational instability (RMI) in 2D periodic plasma

(see by instance [4]). Unfortunately, these codes demand a stronger numerical effort than their particle

counterparts and require the discretization of the whole phase space. For this reason little progress has been

made on fast and accurate integration of the Vlasov equation in two and three dimensions for a magnetized

plasma. But a knowledge of the non-linear evolution of the magnetized plasmas in two and three dimen-

sions is indispensable in understanding the plasma physics of controlled thermonuclear fusion or physics of
the laser–plasma interaction. Most of the problems in ‘‘open’’ plasma treated with Vlasov codes are 1D in

space and based on the time splitting scheme introduced by Cheng and Knorr [5]. In this scheme, the Vlasov

equation was integrated in the x–v phase space by splitting up the free streaming term and the acceleration
term in such a way that the overall scheme is in second order in time step. However in the strongly rela-

tivistic regime of the laser–plasma interaction an unadapted use of the splitting scheme may lead to a bad

density conservation and triggers numerical instability in the case of a 1D system (see by instance [6]).

Recently a direct integration using a 2D full advection based on B-spline interpolation [6] was proposed for

achieving accurate solution of the Vlasov–Maxwell system. In this paper we present results of 2D open
semi-Lagrangian Vlasov (SLV) simulations of the ultra-intense electromagnetic pulse with a slightly

overdense (or underdense) plasma and describe the new features of the 2D SLV code that made it possible

for the first time to simulate, using a 2D causal Vlasov code, the penetration of a strong electromagnetic

pulse in an overdense plasma by relativistic self-induced transparency, and the relativistic filamentation

instability (RFI) in an underdense plasma. In this code, splitting scheme has been used and the integration

of the Vlasov equation is made along their exact characteristics. The code exists in 1D1/2 and 2D geom-

etries and runs on the Cray T3E (using 128 or 192 processors) and the vectorial NEC-SX5 computer at the

IDRIS center (Orsay, France).

2. The 2D relativistic and electromagnetic Vlasov model

In this paper, we study the propagation of an ultra-intense linearly p-polarized laser light in a plasma

along the x-direction with the use of a 2D relativistic SLV model. The electron distribution function

f ðx; y; px; py ; tÞ obeys the relativistic Vlasov equation

of
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þ px
mc
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þ py
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where the Lorentz factor was given by

c2 ¼ 1þ p2x
m2c2

þ
p2y

m2c2
: ð2Þ

The electromagnetic field components ðEx;Ey ;BzÞ obey Maxwell equations:

oE

ot
� c2 rotBþ J=e0 ¼ 0; ð3Þ

oB

ot
þ rotE ¼ 0; ð4Þ

divE ¼ q=e0; ð5Þ
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divB ¼ 0; ð6Þ

where the electron current density J and the charge density q (ni being the ion density) are given by

J ¼
Z Z

p

mc
f dpx dpy and q ¼ e

Z Z
f dpx dpy � eni:

In our numerical experiments, we use normalized quantities: time t, space coordinates x; y and momentum
coordinates px; py are, respectively, normalized to the inverse plasma frequency x�1

p , cx
�1
p and mc. The

electric field components Ex;Ey and Bz are normalized to mxpc=e and mxp=e. We adopt the periodic
boundary conditions in the y-direction and the incident laser pulse is linearly polarized in the y-direction (p-

polarization). The conditions for the left hand and right hand boundaries in the x-direction correspond the

free propagation of the light without reflection.

3. The numerical parallel algorithm

The algorithm used here is similar to the one of Ref. [8] (corresponding to the integration of the Vlasov
equation in a 2D periodic plasma along their characteristics) with improvements as described in [6], which

now allow the full relativistic treatment using B-spline interpolation of the distribution function in the

momentum space.

3.1. The time splitting problem

Let us first recall the principles of the semi-Lagrangian method (see [7,9]) for the Vlasov equation. We

refer the reader to Sonnendr€uucker et al. for more details (see [6]). The Vlasov equation (1) can be written in
the following form:

of
ot

þUðX; tÞ � rX f ¼ 0; ð7Þ

where X stands for the phase space coordinates (here X ¼ ðx; y; px; pyÞ) and U is a divergence-free vector
field having up four components in the 2D case. Note that, since U is divergence-free, Eq. (7) can also be

written in a conservative form

of
ot

þ divX ðUðX; tÞf Þ ¼ 0: ð8Þ

Splitting the components of X into two sets X1 and X2, Eq. (8) can then be written in the form

of
ot

þ divX1ðU1ðX1;X2; tÞf Þ þ divX2ðU2ðX1;X2; tÞf Þ ¼ 0: ð9Þ

Moreover, it is well known (see for instance [6]) that solving separately

of
ot

þ divX1ðU1ðX1;X2; tÞf Þ ¼ 0; ð10Þ

of
ot

þ divX2ðU2ðX1;X2; tÞf Þ ¼ 0; ð11Þ

keeps the second-order accuracy for the whole equation (9) by alternating the solves.
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It is now important to point out that the semi-Lagrangian scheme does not solve Vlasov�s equation in the
conservative form, but in the advective form to make full use of the backward characteristic method.

Therefore if (and only if)

divX1U1ðX1;X2; tÞ ¼ 0; ð12Þ

divX2U2ðX1;X2; tÞ ¼ 0; ð13Þ

we get

of
ot

þU1 � rX1f ¼ 0; ð14Þ

of
ot

þU2 � rX2f ¼ 0; ð15Þ

and keep the second-order accuracy for the whole equation (7) by alternating the solves. This is the basis of

the time splitting scheme providing the conditions (12) and (13) are fulfilled. This is obviously the case for

the 1D electrostatic Vlasov equation. On the contrary, if Eqs. (12) and (13) are not true then splitting Eq.

(7) is equivalent to solve advective equations with a source term

of
ot

þU1 � rX1f ¼ �f divX1ðU1Þ; ð16Þ

of
ot

þU2 � rX2f ¼ �f divX2ðU2Þ: ð17Þ

Although from the divergence-free property of the full advection field U, we have

divX1ðU1Þ ¼ �divX2ðU2Þ; ð18Þ

the source term in (16) or (17) do not cancel exactly since in a time splitting scheme (16) and (17) are not

solved at the same time. Therefore a necessary condition for the time splitting to preserve the conservative

character of the Vlasov equation is that the advection fields U1 and U2 are both divergence free. Fur-

thermore the conservation of the continuity equation

oq
ot

þ divJ ¼ 0 ð19Þ

is also verified provided that the conditions (12) and (13) are fulfilled. Let us consider the simplified

equation which takes into account relativistic effects

of
ot

þ epyBz

mc
of
opx

� epxBz

mc
of
opy

¼ 0; ð20Þ

we see clearly that

divpx
epyBz

mc

� �
¼ � epxpyBz

m3c2c3
¼ �divpy

�
� epxBz

mc

�
6¼ 0: ð21Þ

This condition (21) implies the use of a direct 2D advection for solving (20).
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3.2. The semi-Lagrangian method

We can now introduce the characteristics of (7), which are the solutions of the dynamical system

dX

dt
¼ UðXðtÞ; tÞ: ð22Þ

Let us denote by Xðt; x; sÞ the solution at time t whose value is x at time s. Taking XðtÞ to be a solution of
Eq. (22), we have

d

dt
ðf ðXðtÞ; tÞÞ ¼ of

ot
þ dX
dt

� rX f ¼ of
ot

þUðXðtÞ; tÞ � rX f ¼ 0; ð23Þ

which means that f is constant along their characteristics. This can also be written as

f ðXðt; x; sÞ; tÞ ¼ f ðXðs; x; sÞ; sÞ ¼ f ðx; sÞ ð24Þ

for any times t; s and phase space coordinate x. It is this property which will be used in the semi-Lagrangian
method to solve a discrete problem, which is defined by introducing a finite set of mesh points ðxmÞm¼1;...;N
which may or not may be equally spaced. Then, given the value of the distribution function f at the mesh
points at any given time step, we obtain the new value at mesh point xm using that

f ðxm; tn þ DtÞ ¼ f ðXðtn; xm; tn þ DtÞ; tnÞ: ð25Þ

For each mesh point xm, f is computed in two steps:

1. Find the starting point of the characteristic ending at xm, i.e., Xðtn; xm; tn þ DtÞ.
2. Compute f ðXðtn; xm; tn þ DtÞ; tnÞ by interpolation, as f is known only at mesh points at time tn.

3.3. The semi-Lagrangian method for the 2D relativistic Vlasov method

As we saw in the previous section, the equation can be split into four 1D advections, namely

of
ot

þ px
mc

of
ox

¼ 0; ð26Þ

of
ot

þ py
mc

of
oy

¼ 0; ð27Þ

of
ot

þ eEx
of
opx

¼ 0; ð28Þ

of
ot

þ eEy
of
opy

¼ 0; ð29Þ

and one 2D advection given by Eq. (20).
Note that in Eq. (20) the advection field is not independent of the p advection variable. However the

characteristics of (20) can be determined exactly. Hence, taken separately, these steps may be exactly in-

tegrated along their exact characteristics and therefore a better numerical stability of the global scheme can

be obtained. These characteristics of Eq. (20) are usually given by
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dpx
dt

¼ epyBz

mc
; ð30Þ

dpy
dt

¼ � epxBz

mc
: ð31Þ

Multiplying Eq. (30) by px and Eq. (31) by py , we see clearly that the Lorentz factor c remains
constant along the motion. The exact solution of previous equations (30) and (31) can be written in

the form

p	x ¼ px cosxDt � py sinxDt; ð32Þ

p	y ¼ px sinxDt þ py cosxDt; ð33Þ

where x ¼ eBz=mc. A formal solution of Eqs. (26)–(29) is then straightforward and the different steps of the
code are:

f 	ðx; y; px; pyÞ ¼ f n x
�

� px
mc

Dt
2
; y; px; py

�
; ð34Þ

f 		ðx; y; px; pyÞ ¼ f 	 x; y
�

� py
mc

Dt
2
; px; py

�
; ð35Þ

f 3	ðx; y; px; pyÞ ¼ f 		 x; y; px

�
� eEx

Dt
2
; py

�
; ð36Þ

f 4	ðx; y; px; pyÞ ¼ f 3	 x; y; px; py

�
� eEy

Dt
2

�
; ð37Þ

f 5	ðx; y; px; pyÞ ¼ f 4	 x; y; p	x ; p
	
y

� �
; ð38Þ

f 6	ðx; y; px; pyÞ ¼ f 5	 x; y; px; py

�
� eEy

Dt
2

�
; ð39Þ

f 7	ðx; y; px; pyÞ ¼ f 6	 x; y; px

�
� eEx

Dt
2
; py

�
; ð40Þ

f 8	ðx; y; px; pyÞ ¼ f 7	 x; y
�

� py
mc

Dt
2
; px; py

�
; ð41Þ

f nþ1ðx; y; px; pyÞ ¼ f 8	 x
�

� px
mc

Dt
2
; y; px; py

�
; ð42Þ

where n and nþ 1 denote the initial and final times tn ¼ nDt and tnþ1 ¼ ðnþ 1ÞDt. In (38) the distribution
function is calculated by a tensor product cubic B-spline interpolation, f being known only at mesh
points.
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Hence, since the advection field for each previous step (except the step given by (38)) does not depend on

the variable to be advected, step 1, given the starting point of the characteristic, is then straightforward. In

the relativistic Vlasov equation (1), we still have ojðpj=mcÞ ¼ 0 for j ¼ x or y, but no such property for the
force term which now depends on the Lorentz factor given by (2). A straightforward computation shows

that we still have

divp eE
�

þ ep
mc


 B
�

¼ 0:

Hence we could split the equation into one 2D advection for the momentum and two 1D advections for the

treatment of the physical space.

Remark. Let us recall a few properties of our model that have been derived in previous investigations [6]:

1. For the free particle motion described by

of
ot

þ p

mc
� rX f ¼ 0

the CFL (Courant–Friedrichs–Levy) condition is naturally satisfied due to the relativity since

kp=mck < c. However the strong relativistic effects met in laser–plasma interaction at high intensities,
generate strong fields leading, in the Eulerian scheme, to small time steps since keE=mxpck � 1. In the

semi-Lagrangian method, the time step is not restricted by the usual CFL condition, but by the de-

formational Courant number krUDtk < 1, which is often less restrictive.
2. The Vlasov equation coupled with the Poisson or Maxwell system often contains filamentation, which

has been one of the reasons why Vlasov simulations have been poorly considered, compared to PIC
simulations which are insensitive to this problem. This problem appears already on the treatment of

the motion of free particles described by the equation for f ðx; v; tÞ,

of
ot

þ v
of
ox

¼ 0: ð43Þ

A Fourier transform on x-axis gives

of
ot

� ikvf ðk; v; tÞ ¼ 0; ð44Þ

leading to a solution in the usual form

f ðk; v; tÞ ¼ f ðk; v; 0Þ expðikvtÞ: ð45Þ

We see in (45) that, as a function of v, f ðk; v; tÞ oscillates at the frequency kt. When this frequency reaches
the inverse of Dv (Dv being the size of the velocity sampling) we cannot follow the exact solution of f.
Indeed, the distribution function f ðk; v; tÞ is constant along the characteristic curves, which become close,
so that phase space regions where f ðx; v; tÞ has different values come close together and steep gradients are
generated. At some time in the simulation, the phase space grid becomes too coarse to follow these thin

filaments. Furthermore this mechanism is strongly amplified by relativistic effects since electron relativistic

parametric instabilities have already this tendency to generate thin filaments in phase space. Relativistic

effects add the coupling between the momentum variables (see Eq. (20)). Now in the treatment of f ðx; v; tÞ
by Eulerian codes we may here to interpolate and this operation may lead to numerical instability. The code

must avoid these instabilities and provides a smoothing of the details of the velocity space, hoping that

these details will not influence the subsequent evolution of the plasma. As a result, finite-difference
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numerical simulations of the Vlasov equation usually do not suffer from the numerical instabilities driven

by the filamentation.

In the non-relativistic case, one of the most popular methods leading to a correct treatment of the 1D

Vlasov equation was given by Cheng and Knorr [5] and the method is based on the time splitting scheme

and cubic spline interpolation of the distribution function. The semi-Lagrangian model we proposed here is

a generalization of the method of Knorr and Cheng and we can treat a relativistic Vlasov equation and this

method is the mean to obtain a particle method without numerical noise but the price to paid is that this

method is more expensive than a PIC method in term of memory and computational time.
Another scheme for the Vlasov equation is the flux balance method (FBM) [3], and more recently [16],

the positive and flux conservative PFC method [15]. The basic idea of this method is to compute the average

of the Vlasov equation solution in each cell of the phase space grid by a conservative method. In the PFC

method, the starting point is the FBM method, and the authors have introduced a slope corrector to ensure

the preservation of positivity and the maximum of f. Unlike classical eulerian algorithms such as finite
difference or finite volume schemes, these methods are also not restricted by the CFL condition on the time

step. The PFC method enforces the conservation of the global mass and controls numerical oscillations of f.
However this method seems to be more dissipative but remains a possible candidate for solving the rela-
tivistic Vlasov equation.

3.4. Maxwell equations

Maxwell�s equations (3) and (4) can be written in the following form for a p-polarized linearly elec-

tromagnetic pulse:

oEx

ot
¼ � Jx

e0
þ c2

oBz

oy
; ð46Þ

oEy

ot
¼ � Jy

e0
� c2

oBz

ox
; ð47Þ

oBz

ot
¼ oEx

oy
� oEy

ox
: ð48Þ

Eqs. (46)–(48) are then solved using a well-known leapfrog scheme leading to the following set of equations:

E
nþ1

2

x iþ1
2
;j
¼ E

n�1
2

x iþ1
2
;j
þ c2Dt

Dy
Bn
z iþ1

2
;jþ1

2

h
� Bn

z iþ1
2
;j�1

2

i
� Dt
2e0

Jn
x iþ1;j

�
þ Jn

x i;j

�
; ð49Þ

E
nþ1

2

y i;jþ1
2

¼ E
n�1

2

y i;jþ1
2

� c2Dt
Dx

Bn
z iþ1

2
;jþ1

2

h
� Bn

z i�1
2
;jþ1

2

i
� Dt
2e0

Jn
y i;jþ1

�
þ Jn

y i;j

�
; ð50Þ

Bnþ1
z iþ1

2
;jþ1

2

¼ Bn
z iþ1

2
;jþ1

2
þ Dt

Dy
E
nþ1

2

x iþ1
2
;jþ1

h
� E

nþ1
2

x iþ1
2
;j

i
� Dt

Dx
E
nþ1

2

y iþ1;jþ1
2

h
� E

nþ1
2

y i;jþ1
2

i
: ð51Þ

3.5. Rigorous charge conservation for local electromagnetic fields solvers

It is well known, that given initial electromagnetic field ðE0;B0Þ, Maxwell�s equations (3)–(6) have a
unique solution in a well-chosen functional space, and that it suffices to consider Eqs. (3)–(6) (divergence
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terms) being automatically satisfied as a consequence from (3) and (4) provided they are satisfied by the

initial conditions. The source terms in Maxwell equations J and q satisfy the continuity equation (19).
However, when Eq. (19) is not exactly satisfied, which is the case generally in PIC computations where J

and q are computed approximately from particle data, the Maxwell system (3)–(6) is then overdetermined
and one has to discard a part of the information contained in the given J and q in order to get the solution.
The first obvious approach to this problem, we have indeed adapted in the SLV code, is to still disregard

Eqs. (5) and (6) and compute the solution only from (3) and (4) which is a well-posed problem. It is well

known that, in PIC codes, although the error committed at each time step is small, these errors accumulate
and long time computations become erroneous due to the lack of charge separation. A second approach,

which is used in most PIC simulations, consists in still calculating the electric and magnetic field E and B

from the two rotational Eqs. (3) and (4), but perform at every time step or from time to time a so-called

Poisson correction, which consists in discarding the irrotational part of E and replacing it by the solution of

the Poisson equation. We refer the reader to publications [11] and [12] for more details.

Success of the SLV model is enhanced by the property of good conservation of the continuity Eq. (19),

due to the fact that the current density J and charge density q were directly evaluated by using the electron
distribution function, which, in an eulerian description is noiseless. One also checks in semi-Lagrangian
simulations that divE� q=e0 remains small by virtue of the conservation condition (19) on the charge
density. The resulting error in divE ¼ q=e0 remains small during the simulation.
Let us now go through the steps of the algorithm for the electromagnetic model. Thanks to the Splitting

method that we use, the semi-Lagrangian method can be applied once for the 2D physical space advection

(or two 1D physical are also possible), with the velocity v ¼ p=mc as a parameter, and once for a 2D
momentum space advection; with the physical space coordinate r as a parameter. Thus, if the data are

distributed in each case according to the parameter, there will be no communication at all. The compu-

tations in this case, which are fully local, involve multiple tridiagonal solves for the cubic spline interpo-
lation, and explicit computations for the Spline evaluation. Details of the parallelization of the code can be

found in [10].

3.6. The parallel algorithm

The Vlasov–Maxwell system is solved numerically using the time splitting scheme, which involved here

five steps. Normally, for a 4D problems like ours, a global 3D or 4D decomposition is optimal, since it has

the smallest interprocessor boundary and involves no data distribution on the processors. However tridi-

agonal solves (required for computing the cubic B-spline or cubic spline coefficients) are well known not to

have very good scalability when performed on multiple processors. On the other hand, we saw that, for

each stage of the algorithm, there is a 1D band (or 2D band) decomposition for which there is a natural

optimal parallelism. Therefore our final choice was to take several distinct decompositions, even through
this would involve global communication. One primary decomposition in 1D bands in the px-direction for
the distribution function and 1D bands in the x-direction for f.

Step 1: Compute the electric field at time tnþ1=2 using Eqs. (49) and (50). The current density J
n was

evaluated exactly at time tn ¼ nDt through the data of the electron distribution function using extended
integration formula constructed by fitting cubic polynomials through successive groups of four points and

with the same order as Simpson�s rule (for more details see [13], pp. 128–129).
Step 2: Perform the shift over Dt=2 of the distribution function in the x- and y-directions using Eqs. (34)

and (35).
Step 3: Compute the magnetic field Bnþ1

z iþ1
2
;jþ1

2

using Eq. (51) and calculate the field B	
z ¼ ðBn

z þ Bnþ1
z Þ=2 at

time tnþ1=2.
Step 4: Transpose the distribution function in order to obtain a decomposition domain in the x-direction

for f and shift the transposed function tf for a time step in the p space using the sequence of Eqs. from (36)–
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(40) using the exact characteristics (32) and (33). Then we transpose again tf to obtain the 1D bands in the
px-direction.

Step 5: Shift f for half a time step Dt=2 in the x and y-direction using again Eqs. (42) and (41). The error
in the charge density conservation is then evaluated at each time step using

enþ1i;j ¼
qnþ1
i;j � qn

i;j

Dt
þ
J
nþ1

2

x iþ1;j � J
nþ1

2

x i�1;j

2Dx
þ
J
nþ1

2

y i;jþ1 � J
nþ1

2

y i;j�1

2Dy
: ð52Þ

4. Numerical tests

In this section, we present a first series of numerical tests corresponding to the propagation of an ultra-

intense linearly polarized laser beam in an overdense plasma along the x-direction. It is well known that a

high frequency electromagnetic pulse, with frequency x0 less than the electron plasma frequency xp, cannot
propagate in a plasma. But if the intensity of the pump wave is sufficiently intense, to make electrons

relativistic, the cutoff frequency xp is then modified due to relativistic effects. Two penetration mechanisms
have been considered: relativistic self-induced transparency and conventional hole boring or forward

motion of the critical surface due to the ponderomotive pressure.
Here we focus on the propagation of high intensity pulse inside a slightly overdense plasma of density

ne ¼ 2ncrit, where ncrit is the critical density. The plasma consists of electrons with initial temperature of

Fig. 1. Penetration of the Poynting vector inside the overdense plasma at time txp ¼ 80 by relativistic self-induced transparency. The
periodic structure of the electromagnetic pulse is clearly apparent.
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Te ¼ 5 keV and fixed ions, forbidding the conventional hole boring process. The size of the simulation box is
Lxxp=c ¼ 60 ( 6:75k0 where k0 is the laser wavelength) along x and Lyxp=c ¼ 80 ( 9k0Þ along y. We adopt
the periodic boundary conditions in the y-direction. The incident p-linearly polarized wave has a gaussian

transverse intensity profile with a peak intensity of Ik20 ¼ 8:20
 1018 W lm2 cm�2. This intensity corre-

sponds to a0 ¼ posc=mc ¼
ffiffiffi
6

p
. The phase space sampling used here is NxNyNpxNpy ¼ 384
 128
 128
 64,

i.e., 402 106 grid points or ‘‘particles’’. Typical time step used in simulation are Dtxp ¼ 0:025 or 0.05.
Figs. 1 and 2 show, respectively, at time txp ¼ 80 and txp ¼ 120 the penetration of the Poynting vector

inside the overdense plasma. Extremely intense quasi-static magnetic field corresponding to 100MG (not
shown here) have been observed in the simulation to form in the overdense plasma. The periodic structure

of the light is apparent in Fig. 1 while we see in Fig. 2 a more complex structure due to the incident and

reflected parts of the electromagnetic wave. One of the basic effects shown in simulation is thus the pos-

sibility for a strong laser pulse to propagate in the overdense plasma by relativistic self-induced trans-

parency. Indeed the optical properties of plasma are determined not by the electron rest mass but by its

relativistic mass. As a consequence, for a sufficiently high amplitude of the laser beam inside the plasma, the

quiver motion of plasma electrons can enlarge their relativistic mass. This mechanism is apparent in Fig. 3

which is a plot of the electron relative density g ¼
R
f =cdpx dpy at time txp ¼ 80: The corresponding curve

at time txp ¼ 120 is displayed in Fig. 4. The laser pulse penetrates inside the overdense plasma by rela-
tivistic self-induced transparency creating a channel in plasma density. As illustrated in Fig. 4, the depth of

the hole increased with time. As the hole forms, the penetration of the laser light leads to a strong local

absorption of the incident pump wave energy to plasma. This penetration of the laser pulse is associated

with the plasma wave breaking giving rise to a strong plasma electron trapping mechanism.

Fig. 2. Same representation as in Fig. 1 but at later time txp ¼ 120 showing a more complex structure due to the incident and reflected
parts of the electromagnetic pulse.
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The charge density q and the current density J are derived from the electron distribution function and
satisfy the charge continuity equation. Note in this case if the charge conservation condition can be satisfied

rigorously numerically, one can update the electromagnetic field using only the two curl Maxwell equations.

Numerical experiments performed here have shown that the charge conservation condition is fulfilled

satisfactorily. Finally we test the complete (field plus ‘‘particle’’) SLV code using charge conservation as a
local measure of code accuracy. In Figs. 5 and 6 we have plotted de ¼ oq=ot þ divJ at two different times of
plasma evolution txp ¼ 80 and 120, as a measure of the numerical error generated by the field solve. We see
clearly that de remains small. Numerical tests, not shown here, indicate that the error is reduced signifi-
cantly as one improves the phase space grid resolution. It is well known that the noise properties observed

in electromagnetic PIC simulations were related to the methods of forming J, not to the use of electro-

magnetic fields. Methods for calculating a charge conserving J have been discussed for q obtained by
Nearest-Grid-Point weighting [14]. The latter authors found that the noise level in the electromagnetic fields

rose in time at an inconveniently rapid rate. It is not the case here, when the current density is directly
obtained through the data of the electron distribution function.

The most striking advantage, however, of the Vlasov code (already demonstrated in a 1D open-system

(see by instance [1,2]) is the very fine resolution of the distribution function in phase space, capable of

resolving the finest mechanisms of wave–particle interaction. We are able to evaluate accurately the current

density J in the laser plasma interaction. Figs. 7 and 8 show the behavior of the current density obtained by

Fig. 3. The relative electron density computed at time txp ¼ 80. We see clearly that the laser beam penetrates inside the overdense
plasma by self-induced transparency creating a hole in the electron density.

Fig. 4. The corresponding representation at time txp ¼ 120. As illustrated in the figure, the depth of the hole increased with time.
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the SVL model at time txp ¼ 80 and 120. As shown in Fig. 7, the laser beam propagation inside the

overdense plasma induced by relativistic self-induced transparency gives rise to a strong peak in the current

density inside the overdense plasma located near the channel. Fig. 8 displays the complex structure of the

current density later at txp ¼ 120: As the pulse continues to propagate, the local absorption (described by
the term J � E) increases as the hole depth increases. The plasma current increases in intensity and the peaks
are located on the wall of the channel, as can be seen in Fig. 8.

To benchmark the performance of this code, we present timing result from running this code on the Cray

T3E parallel supercomputer and comparisons have been made with the NEC-SX5 vectorial supercomputer

at the IDRIS center. The Cray T3E at IDRIS has 256 Alpha EV5 processors, each with peak speed of 600

Mflops, and the total memory size is 32 GB while the NEC-SX5 computer has 40 vectorial nodes, each of 8

Gflops. The vectorized version of the Vlasov code achieved a data processing rate of 1.9 Gflops (for one

processor) and demonstrated a reasonably high vectorized efficiency. Different phase space grid
NxNyNpxNpy ¼ 384
 128
 128
 64 and 288
 96
 144
 96 were investigated resulting in a corresponding
number of 402 and 382 millions of particles. The total CPU time was close to 0.28 ls per time step per
particle on the NEC-SX5 computer while the parallelized version of the Vlasov code gives 16.0 ls per time
step per particle and per processor.

Fig. 6. Measure of local charge conservation at later time txp ¼ 120. The current density has been directly obtained through the data
of the electron distribution function, which in eulerian description is ‘‘noiseless’’.

Fig. 5. Measure of the local charge conservation obtained by semi-Lagrangian Vlasov simulation at time txp ¼ 80: numerical ex-
periment performed here shows that the charge conservation (de) condition is fulfilled satisfactorily.
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5. Filamentation aspect in phase space induced by relativistic parametric instabilities

In this section we present two examples with particular emphasis on particle dynamics and the fila-

mentation phenomena in phase space. To demonstrate the efficiency of our algorithm and the high level of
the complexity induced by Vlasov equation in cartesian geometry, a second series of numerical simulations

has been carried out in order to analyze in detail the wave–particle dynamics met in the relativistic regime of

the laser–plasma interaction in moderately overdense (and underdense) plasma. It is well known that

electromagnetic waves are parametrically unstable when they propagate through a plasma. At low inten-

sities (a0 � 1), they are clearly identified as stimulated Raman scattering (SRS). Relativistic effects add the

relativistic modulational instability (RMI) and the relativistic filamentation instability (RFI). There are two

aspects of the same instability, the wave vector being, respectively, parallel and perpendicular to the wave

Fig. 8. Current density behavior at later time txp ¼ 120 in time evolution showing now a more complex structure and high local
absorption in plasma.

Fig. 7. Current density behavior in real space at time txp ¼ 80, indicating the penetration mechanism of the intense laser pulse: we see
clearly a strong peak in the current density located near the hole.
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vector of the pump wave. Vlasov simulations provide an excellent description of small-scale phase space

dynamics although the filamentation mechanism (or phase space mixing) is saturated by some numerical

dissipation induced by the numerical scheme.

5.1. 1D SLV simulation of self-induced transparency in an overdense plasma

Although the demanding causal simulations are necessary to understanding realistic case, these simu-

lations are also difficult to analyze in detail, sufficient to gain even qualitative physical understanding. One

of the difficulties is that even the simplest cases of a plasma wave (with a given wave number) involve the

growth of the harmonic modes, involving several plasma modes in the system loading to a more compli-

cated structure in phase space. It is in particular the case of Fig. 9 obtained in the case of a 1D periodic

plasma, showing the x–px phase space structures and in particular the occurring of a vortex structure in
rotation with the formation of thin filaments. This simulation has been carried out using a 1D simplified

model with Dirac distribution function in the p? transverse direction dðp? � P?ðx; tÞÞ which corresponds to
consider the plasma to be cold in the transverse direction, the electron distribution function depends in that

case only to the x and px phase space coordinates. Details of the model are given in [17]. The initial ho-
mogeneous Maxwellian distribution function has a temperature of 3 keV. The initial large amplitude pump

wave ðx0; k0Þ is taken as

E ¼ ð0;E0 cos k0x;E0 sin k0xÞ: ð53Þ

ðx0; k0Þ satisfy the relativistic dispersion relation of circularly polarized waves x20 ¼ x2p=c0 þ k20c
2 with a

Lorentz factor given by c20 ¼ 1þ a20. Choosing k0c=xp ¼ 1=
ffiffiffi
2

p
¼ 2Dk (Dk ¼ 2p=L being the fundamental

wave number and L the length of the plasma box) and a0 ¼
ffiffiffi
3

p
(which corresponds to an irradiation of

I ¼ 8:2
 1018 W cm�2 for an electromagnetic wave length of 1 lm), we obtain x0 ¼ xp (i.e., a ratio of the
electron plasma density to the critical density of ne=ncrit ¼ 1 or ne=c0ncrit ¼ 0:5Þ:We have used a phase space
sampling of NxNpx of 512
 768 points and a time step of Dtxp ¼ 0:010. Here the formation of smaller and
smaller scales in phase space results from a physical process induced by the relativistic parametric insta-

bility. Such a phenomena occurs even in a simple geometry (Cartesian) using periodic boundary conditions

and plays a major role in causal simulations. To reduce the influence of this microstructure, we have in-
crease the electron temperature to Te ¼ 12 keV in 2D simulations. Although the previous model was

simplified, it gives some insight in the behavior of the electron distribution in phase space.

We consider now a 1D1/2 simulation in the case of the interaction of a p-polarized electromagnetic

wave of quiver momentum a0 ¼ 2 with an 1D plasma of density ne=ncrit ¼ 1:60. The laser pulse propa-
gates in the x-direction and is normally incident on an inhomogeneous density profile. We have used a

phase space sampling of NxNpxNpy of 769
 193
 129 or 19 millions of grid points or ‘‘particles’’. The
time step is Dtxp ¼ 0:0375. The initial electron plasma temperature is Te ¼ 12 keV in both px- and py-
directions. Figs. 10 and 11 show, respectively, the x–px and x–py phase space representation. Although the
behavior of the distribution function remains simple in the x–py phase space, the electron distribution
function exhibits a strong modulation induced by the relativistic quiver velocity of particles. The behavior

is more complex in the x–px phase space where we can see clearly the formation of filaments at time
txp ¼ 135, leading to a three-vortex structure at later time txp ¼ 202:5 as the result of a phase space
mixing. The induced transparency has been related to a Doppler shift of the electromagnetic wave re-

flected by the discontinuity associated with the wave front propagation. This discontinuity, located at

xxp=c ’ 80 at txp ¼ 202:5, acts as a mirror for the incoming laser light which is reflected with the
Doppler shift. This reflected electromagnetic light of frequency xr and wave number kr beats with the
incoming pump wave of frequency x0 and wave number k0 inside the plasma leading to the formation of
a plasma wave of frequency x0 � xr and wave number k0 þ kr. As a result of this beat process, vortices
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Fig. 9. x–px phase space representation of the distribution function obtained using 1D periodic simulation showing the formation of
the microstructure. The parameters are n=ncrit ¼ 1 and a0 ¼

ffiffiffi
3

p
.
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are generated in the phase space. Very fine physical phenomena can then be successfully obtained in that

case using a SLV code.

5.2. 2D causal simulation of RFI

We discuss now a specific example of 2D causal simulation of the evolution of the RFI which is initiated

by the refraction of the laser light into regions of low relative plasma density. In that case spatial transverse

effects are important and implies 2D simulations. The process of RFI itself leads to non-uniform illumi-

nation and to the self-focusing of a laser beam which may give rise to an amplification of the laser peak

Fig. 10. x–px phase space representation obtained with causal simulation including the propagation of a linearly polarized wave with a
normalized quiver momentum of a0 ¼ 2 inside an overdense plasma of density ne ¼ 1:6ncrit at three different times during the evolution.
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intensity so that the electron parametric instability as SRS or RMI will develop preferentially in those

spatially localized regions of high intensity constituted by the filaments of the laser pulse. Thus RFI in-
teracts with other kinetic processes, in particular parametric instabilities as SRS, which can grow fastest in

filaments.

The physical parameters are a0 ¼
ffiffiffi
3

p
and ne=ncrit ¼ 0:50 corresponding now to the growth of the RMI in

an underdense plasma. We have used a phase space sampling of NxNyNpxNpy ¼ 768
 128
 192
 32 or
603
 106 grid points to describe the electron distribution function. The electromagnetic wave field
eEy=mxpc has an uniform transverse profile plus a small perturbation, its expression reads

Fig. 11. Corresponding x–py phase space representation showing the strong modulation of the function induced by the relativistic
quiver velocity of particles.
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eEy

mxpc
ðx ¼ 0; y; tÞ ¼ eE0

mxpc
sin2

pt
2s

� �
1

 
þ
X6
i¼1

bi sinðiDkyyÞ
!
sinðx0tÞ; ð54Þ

where s is the rise time of the electromagnetic pulse and Dky ¼ 2p=Ly the fundamental mode in the y-di-

rection. We have used bi ¼ 0:010 for i ¼ 1; . . . ; 6. We have plotted in Fig. 12 the quantity

S ¼ E
 B
l0

þ mc2
Z Z

ðc � 1Þ p

mc
f dpx dpy ; ð55Þ

Fig. 12. We have plotted the Poynting vector amplitude plus the relativistic kinetic energy flux at the beginning of RFI using 2D causal

SLV simulations: we see clearly the formation of three filaments in the transverse direction. The parameters are n=ncrit ¼ 0:50 and
a0 ¼

ffiffiffi
3

p
.
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i.e. the Poynting vector plus the relativistic kinetic energy flux during the time evolution. Another possi-

bility to explore transverse effects is the plot of the (normalized) total energy density (including the rela-

tivistic kinetic energy density)

w ¼ mc2
Z Z

ðc � 1Þf dpx dpy þ
1

2
e0E2 þ

B2

2l0
ð56Þ

Indeed the total energy conservation reads

Fig. 13. x–px phase space representation of the electron distribution function at time txp ¼ 120. The curves show the particle dynamics
outside the filament at yxp=c ¼ 5 (above) and inside the filament at yxp=c ¼ 10 (below). We see strong acceleration process inside the
filament located near the wave front followed by modulation of the plasma bulk induced by RMI.
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ow
ot

þr:S ¼ 0: ð57Þ

Fig. 12 shows clearly the formation of filaments induced by RFI in the transverse direction of propagation

of the laser light with peaks intensity which reach three times the initial values of the initial Poynting vector

amplitude S0=nemc3 ¼ ðeE0=mxpcÞ2 ¼ 6 (the numerical estimation was S=nemc3 ’ 19:4 at time txp ¼ 140Þ.
Fig. 13 shows the x� px electron distribution function at time txp ¼ 120; located outside the filament (at

yxp=c ’ 5) and inside the filament for the second curve (located at yxp=c ’ 10Þ. The function has been

Fig. 14. Corresponding x–py phase space representation at the same time as Fig. 13 outside the filament (above) and inside (below): we
see inside the filament the occurring of a second modulation on a mode 3k0.
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averaged over the py variable. The bulk of the electron distribution function is strongly affected inside the
filament with a particle acceleration mechanism located near the front wave, followed by the modulation of

the plasma bulk induced by RMI.

Fig. 14 displays the corresponding x–py phase space representation now averaged over the px variable.
Again the first plot shows the behavior of f outside the filament and the second plot inside the filament.

Both curves exhibit the usual modulation induced by the laser pulse corresponding to the relativistic

transverse quiver momentum seen by particles. However we see now clearly inside the filament a second

modulation on the mode 3k0, k0 being the electromagnetic mode, induced by RMI. These curves show the
importance of kinetic effects in the study of the RFI. It is clear that describing the population of trapped

particles will require a very detailed analysis of the wave–particle dynamics. However a better under-

standing of these processes requires a global view of the distribution function in a 4D phase space which is a

real challenge.

6. Conclusion

In summary, for the first time a 2D semi-Lagrangian Vlasov scheme in an open system has been as-

sembled to simulate the interaction of an ultra-intense electromagnetic wave with a plasma. Due to the

extremely large computational resources required for treating the distribution function described in a four

phase space variable, the use of a massively parallel computer was necessary and enabling. A Vlasov al-

gorithm including relativistic effects was developed in a multi-computer environment and implemented on

the Cray-T3E computer. This code employs a classic time splitting scheme, cubic spline interpolation or B-

Spline interpolation and global synchronous message passing calls using the MPI library for communi-

cations between processors. The performance and accuracy obtained in the examples presented here are
very satisfying. The SLV code in two dimensions may be a good candidate to explore and understand

complex processes induced by the laser–plasma interaction in a strongly relativistic regime and for mod-

erately underdense or overdense plasmas. Finally, obtaining precise insight into the kinetic behavior of the

laser–plasma interaction in a 2D system is now possible with semi-Lagrangian Vlasov model, which can

provide a great deal of resolution in phase space.
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[9] A. Staniforth, J. Côote, Semi-Lagrangian integration schemes for atmospheric model. A review, Monthly Weather Rev. 119 (1991)

2206.

[10] O. Coulaud, E. Sonnendr€uucker, E. Dillon, P. Bertrand, A. Ghizzo, Parallelization of semi-Lagrangian Vlasov codes, J. Plasma
Phys. 61 (1999) 435.

[11] A.B. Langdon, On enforcing Gauss� law in electromagnetism particle-in-cell codes, Comput. Phys. Commun. 70 (1992) 447.
[12] J. Villasenor, O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun. 69

(1992) 306.

[13] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recepies in Fortran, second ed., Cambridge University

Press, Cambridge, MA.

[14] O. Buneman, in: O. Buneman, W. Pardo (Eds.), Relativistic Plasma, Benjamin, New York, p. 205.

[15] F. Filbet, E. Sonnendr€uucker, P. Bertrand, Conservative numerical schemes for the Vlasov equations, J. Comput. Phys. 172 (2001)

166.

[16] A. Mangeney, F. Califano, C. Cavazzoni, P. Travnicek, A numerical scheme for the integration of Vlasov–Maxwell system of

equations, J. Comput. Phys. 179 (2002) 495.

[17] F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendr€uucker, O. Coulaud, Study of propagation of ultra-intense electromagnetic wave

through plasma using semi-Lagrangian Vlasov code, IEEE Trans. Plasma Sci. 28 (4) (2000) 1209.

A. Ghizzo et al. / Journal of Computational Physics 186 (2003) 47–69 69


	A non-periodic 2D semi-Lagrangian Vlasov code for laser-plasma interaction on parallel computer
	Introduction
	The 2D relativistic and electromagnetic Vlasov model
	The numerical parallel algorithm
	The time splitting problem
	The semi-Lagrangian method

	Acknowledgements
	References


